

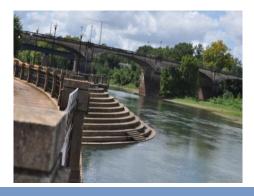
COLUMBUS TO ATLANTA HIGH SPEED RAIL FEASIBILITY STUDY

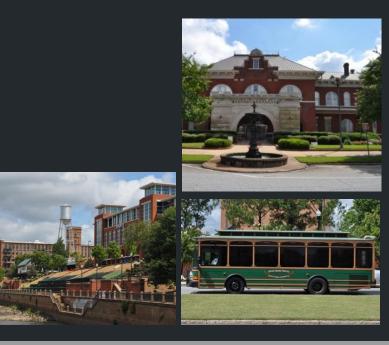
Presented by: HNTB Corporation Presented to: Columbus to Atlanta Stakeholders

January 8, 2014

Today's Agenda

HNTB

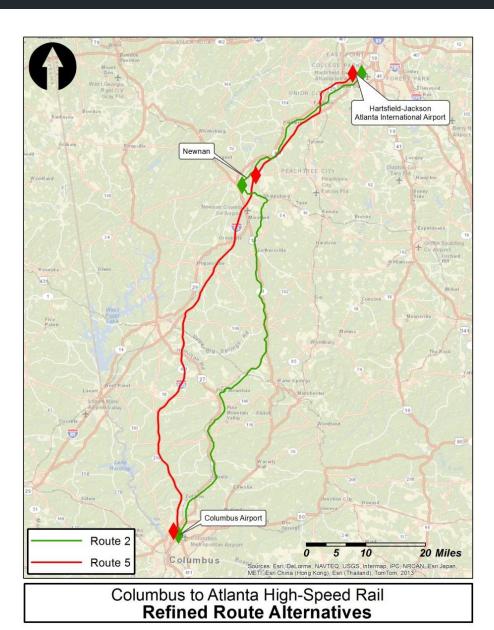

- Recap of September 4th Meeting
- Operating Plans
- Technical Results
 - Capital Costs
 - Ridership/Revenue
 - Operating and Maintenance Costs
 - Financial Results
- Economic Impacts
- Next Steps/Implementation



September 4th Meeting Recap

HNTB

- Stakeholder Participation
- Funding and Financing Strategies
 - Historical Programs
 - Potential Future Programs
 - P3s



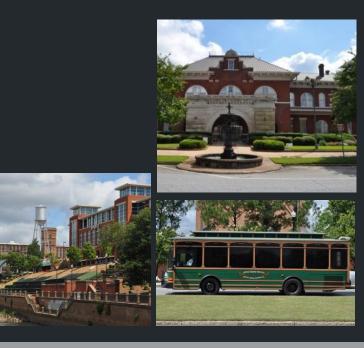
September 4th Recap

HNTB

Scenario Development

- Evaluate the universe of route alternatives based on connectivity between Columbus and Atlanta
- Screen representative alternatives
- Refine and evaluate for feasibility

Operating Plans



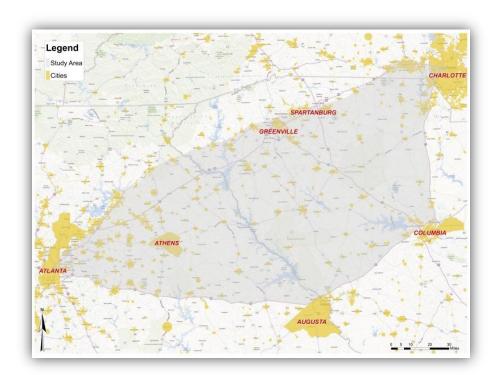
Operating Plans Two representative routes and three technologies:

Technology Alternatives Route 2: Emerging Route 5: Regional Route 5: Express 79-110 mph 110-150 mph **Top Speed** 150-220 mph **Fuel/Energy** Diesel Diesel Electric Shared/Abandoned Route **Dedicated Interstate Route** Route Track **Double Track** Single Track with Sidings **Train Delay Probability** Medium Low

Operating Characteristics						
Technology Rail Distance (mi) Travel Time Average Speed (mph) Daily Round Trips						
Emerging	101.79	1:36	55.1	4		
Regional	91.05	1:26	63.2	5		
Express	91.05	1:01	71.3	6		

Notes: Top speeds can only be achieved in select locations due to route geometry Travel times may decrease as curves are eased for any alternative Average speeds are determined by Train Performance Calculator modeling

Technical Results


Capital Costs

HNTB

Recent Studies:

- Georgia Feasibility Studies
- Atlanta to Charlotte Passenger Rail Corridor Investment Plan

Capital Costs

Estimated Capital Costs

Methodologies

• Follow FRA Standard Costing Categories:

FRA Standard Costing Categories				
10	Track Structures & Track			
20	Stations, Terminals, Intermodal			
30	Support Facilities			
40	Sitework, Right-of-Way			
50	Signals & Communication			
60	Electric Traction			
70	Equipment			
80	Professional Services			

Notes:

- All costs include 30% contingency, unit costs based on Atlanta to Charlotte PRCIP
- All infrastructure improvements for shared-use corridors can be done inside the existing freight right-of-way of 100-fProposed right-of-way for dedicated-use corridors is can be done inside the existing interstate rightof-way

Results

• Costs estimated for Emerging, Regional, Express alternatives

Columbus Airport – H-JAIA				
Total Cost Cost per Mile				
Emerging	\$1.3 Billion	\$13.0 Million		
Regional	\$2.0 Billion	\$22.2 Million		
Express	\$3.9 Billion	\$42.5 Million		

Notes:

- *Emerging utilizes abandoned rail corridors for much of the route, reducing grading costs.*
- Emerging includes minimal right-of-way acquisition, dependent on ownership of abandoned section
- Express includes full electrification, accounting for total difference (\$1.9B) between Regional and Express
- Cost per mile is an average for the entire route, cost per mile fluctuates depending on location of route
- · Regional can be an phasing opportunity for Express

Results

Capital Costs Comparison

Cost per Mile				
Mode	Cost	Source		
Interstate 185	~\$7.8M	Federal Highway Administration (FHWA) ¹		
Intercity Passenger Rail	\$10.7 - \$42.5M	Columbus-Atlanta HSR Feasibility Study ²		
Street Car	\$25.6M	MARTA – Atlanta Streetcar ³		
Light Rail	\$132M	MARTA – Clifton Corridor ⁴		
Interstate (new 4-lane)	\$6.4 - \$12.4M	GDOT ⁵		
Interstate (widening)	\$9.5 - \$17.6M	GDOT ⁵		

Notes:

¹ http://www.fhwa.dot.gov/highwayhistory/data/page03.cfm

² Based on conceptual engineering and unit costs from other regional studies

³ http://streetcar.atlantaga.gov/how-is-the-project-funded/

⁴ http://www.itsmarta.com/Clifton-Corr.aspx

⁵ GDOT Office of Engineering, Cost Estimating System

Ridership and Revenue Summary

Methodologies

- Ridership based on:
 - Fare structure
 - Operating plan (Train Frequencies and Travel Times)
 - Existing/future auto and air travel

HSR Fares	Emerging	Regional	Express
Boarding Fee	\$5.00	\$5.00	\$5.00
Fare per Mile	\$0.28	\$0.40	\$0.40
Total One-Way Fare	\$33.50	\$41.42	\$41.42

* Notes: Fare structure based on Atlanta to Charlotte PRCIP

Results:

- Annual boardings are total boardings (one way, any origin-destination pair)
- Express illustrates highest ridership and revenue estimates

Year	Annual Boardings and Total Revenue (2013\$)			
	Emerging	Express		
2020	775,000	968,000	1.1 million	
2030	\$13.8 million	\$20.5 million	\$23.6 million	
2040	945,000	1.2 million	1.4 million	
	\$15.1 million	\$22.3 million	\$25.8 million	
2050	1.2 million	1.4 million	1.7 million	
	\$16.7 million	\$24.6 million	\$28.4 million	

* Notes: Revenues have been discounted to 2013\$ and include on-board services

Operating Plan and Costs

Methodologies

- Operating Plan primarily based on track geometry (curves)
- O&M Costs based on Variable and Fixed cost categories:

Variable Costs

Train Crew

On-Board Services

Equipment Maintenance

Fuel or Energy

Track and Electrification Maintenance

Insurance

Call Center

Credit Card + Travel Agency Commissions

Fixed Costs

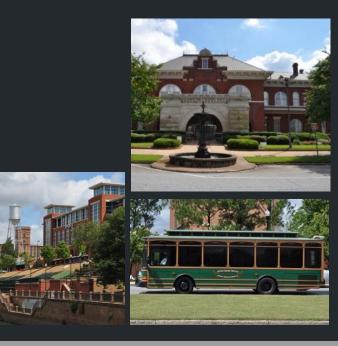
Stations

Administration and Management

* Notes: Unit costs based on Atlanta to Charlotte PRCIP unit costs

Results

- Total annual costs
- Emerging illustrates the least expensive O&M costs


Annual O&M Costs (2013\$)					
2030 2040 2050					
Emerging	\$16.6 million	\$17.2 million	\$17.5 million		
Regional	\$17.8 million	\$18.1 million	\$18.1 million		
Express	\$19.5 million	\$19.3 million	\$18.9 million		

* Notes: Costs have been discounted to 2013\$

Financial Results

Year	Annual Operating Ratio			
		2030	2040	2050
	Total Revenue	\$13.8 million	\$15.1 million	\$16.7 million
Emerging	Total Cost	\$16.6 million	\$17.1 million	\$17.5 million
	Operating Ratio	0.83	0.88	0.95
	Total Revenue	\$20.5 million	\$22.3 million	\$24.6 million
Regional	Total Cost	\$17.8 million	\$18.1 million	\$18.1 million
	Operating Ratio	1.15	1.24	1.36
	Total Revenue	\$23.6 million	\$25.8 million	\$28.4 million
Express	Total Cost	\$19.5 million	\$19.3 million	\$18.9 million
	Operating Ratio	1.21	1.34	1.50

* Notes: FRA seeks Operation Ratio > 1.0 Revenue surplus can be used to help pay capital bonds

Economic Impacts

Potential Economic Impacts

Economic Impacts:

- U.S. High Speed Rail Association
 - Spurs the revitalization of cities
 - Encourages high density and mixed-use
 - Fosters economic development in cities along train routes
 - Broadens labor markets and offers a wider network of employers
- Economic Development Research Group (U.S. Conference of Mayors)
 - Increase business productivity through travel efficiencies
 - Expand visitor markets and generate additional spending
 - Supports the growth of technology clusters

Denver Union Station

Potential Economic Impacts

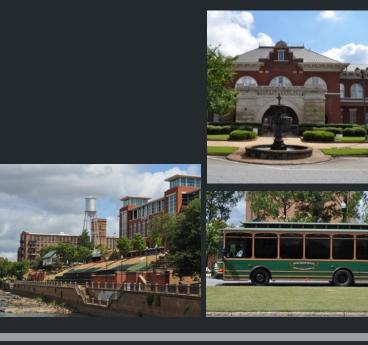
Economic Impacts:

- Job Creation
 - Jobs include: Direct, Indirect, and Induced
 - Typical range: 11,000 to 28,000 per \$1 billion expended

Station Development

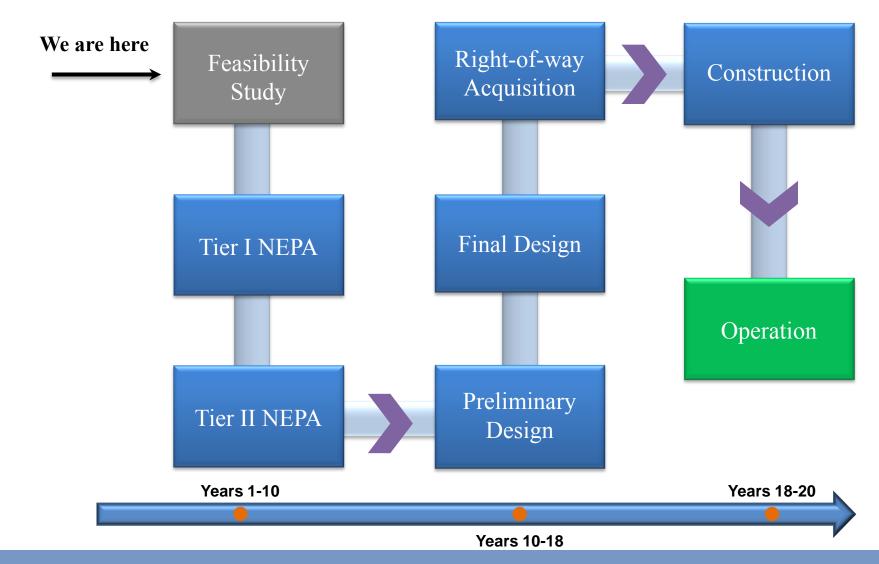
- TOD potential
- Stanford, CT Transportation Center
- Regional Economic Benefits
 - Reverse Commutes
 - Portland to Brunswick Extension

Stanford, CT Transportation Center



Newnan Depot, Newnan, GA

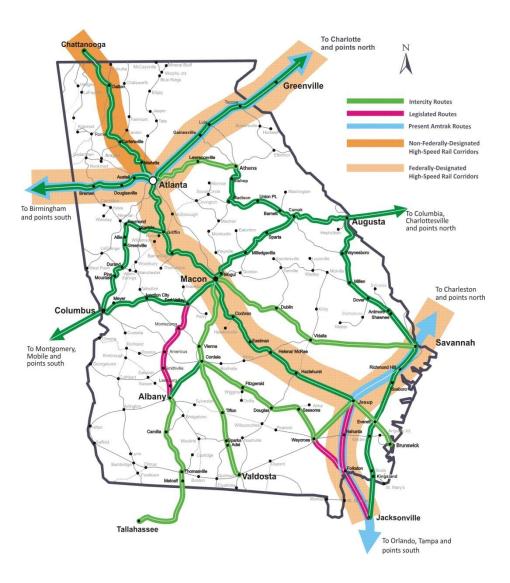
Maine Street Station, Brunswick, ME


HNTB

Next Steps

Federal Implementation Process

Corridor Implementation Overview


HNTB

Immediate Next Steps:

- Roll out results to the public
- Work with local and regional leaders
- Identify funding for NEPA process
- Continue education and outreach
- Incorporate corridor in State Rail Plan

Long-Term Steps:

- Continue building partnerships
- Identify funding/financing strategies for implementation
- Preserve corridor through documentation in official maps and statewide plans

